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To facilitate fast solution of deterministic dynamic programming problems, we present a parameter-free

variation of the Sampled Fictitious Play (SFP) algorithm. Its random tie-braking procedure imparts a natural

randomness to the algorithm which prevents it from “getting stuck” at a local optimal solution and allows

the discovery of an optimal path in a finite number of iterations. Furthermore, we illustrate through an

application to maritime navigation that, in practice, parameter-free SFP finds a high quality solution after

only a few iterations, in contrast with traditional methods.
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1. Introduction

Dynamic programming (DP) models are used to solve a large class of multi-stage decision problems

that require finding an optimal sequence of decisions. Inventory control, production planning and

path finding problems are just a few of the examples of applications of DP. With recent technolog-
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ical advances in data collection and forecasting models, many problem settings have dynamically

updating input parameters, which creates the need to re-solve the DP model in real time to fully

take advantage of the new information. One such problem is our motivating application of mar-

itime navigation in a dynamic environment. Specifically, we study the vessel path-finding problem

in a non-stationary direction, location and time-dependent medium where information about the

surrounding environment is updated in real time. We present a DP model that finds a path that

minimizes a measure of vessel motion (roll) while precluding significant increase in travel time in

search of a calmer path. One challenge of this problem is that the change in the environment and

therefore the change in the input parameters cannot be analytically modeled and incorporated

into a mathematical model but rather needs to be calculated via simulation. Therefore, as the

information on the environment becomes available, the problem needs to be resolved in real time.

Our high fidelity model calls for a new solution method, since small computational time is critical

to real time navigation in a dynamic environment. To this end, this paper presents a parameter-free

Sampled Fictitious Play (SFP) algorithm that can be efficiently applied to finite-horizon determin-

istic DP problems with finite state and action spaces, and, more broadly, shortest path problems

in acyclic networks. Parameter-free SFP eliminates the need for customizable parameters present

in previous versions of the algorithm, and relies on a natural random tie-braking procedure that

provides sufficient exploration within the algorithm to guarantee discovery of a globally optimal DP

solution. Furthermore, we demonstrate that, in practice, parameter-free SFP finds a high quality

solution after only a few iterations: numerical experiments on instances of the minimum-motion

path finding problem for the S175 container ship in a time-varying nonlinear wave field demon-

strate that SFP applied to the DP formulation of the problem finds solutions that reduce vessel

RMS motion (roll) by up to 78% with an acceptable increase in total travel time. Finally, the

SFP algorithm is easily amenable to parallelization, decreasing wall-clock run time by orders of

magnitude, further facilitating real-time implementation.
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1.1. Related Work and our Contributions

The parameter-free Sampled Fictitious Play algorithm for deterministic Dynamic Programming

problems presented in this paper is rooted in the ideas of the well-known Fictitious Play (FP) algo-

rithm (Brown 1951, Robinson 1951) for computing a Nash equilibrium of a finite non-cooperative

game. In every iteration of FP, each player chooses a strategy that is a best response (with respect

to that player’s expected cost, which depends on decisions of all players) to the other players’

strategies, assuming they will be chosen based on the empirical probability distribution induced

by the historical frequency of the best response decisions in all previous iterations. For games

of identical interest, i.e., ones in which all players have identical cost functions, it was shown in

Monderer and Shapley (1996) that FP indeed converges to a Nash Equilibrium. Sampled Fictitious

Play — in which, in each iteration, a sample of strategies from the above empirical probability

distribution is used in calculation of best replies — was introduced by Lambert et al. (2005) and

shown to converge to equilibrium for games of identical interests with probability 1 if the sample

size increases at a polynomial rate with iterations. These results have motivated the use of SFP

as a computationally efficient heuristic for solving optimization problems by representing variables

(or groups of variables) as players in a game of identical interests, with each player’s cost function

equal to the shared objective function of the optimization problem. The strength of SFP as an

optimization heuristic comes from the simplicity of best reply computations by each player; more-

over, in each iteration, after the initial sampling step, each player’s computations can be performed

independently, and thus the algorithm is easily parallelizeable. Experiments with SFP in a variety

of applications areas (see, for instance, Cheng et al. 2006, Garcia et al. 2000, 2007, Ghate et al.

2014, Lambert et al. 2005) also demonstrated that using a sample size of 1 in each iteration of

SFP was sufficient for the algorithm to quickly discover high quality solutions in practice. More

recent research has focused on applications of SFP to Dynamic Programming problems and Markov

Decision Processes by viewing DP states as players in a game, actions available in each state as

its available strategies, and total (expected) DP cost as the common cost function. Appropriately
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modified versions of SFP with sample size of 1 have been shown to discover optimal policies of

finite-horizon deterministic and stochastic DP problems (Sisikoglu 2009, Epelman et al. 2011) as

well as discounted infinite horizon MDPs (Sisikoglu et al. 2011).

It should be noted that, to design SFP-based algorithms with provable convergence properties,

the authors had to include various user-specified parameters in their versions of the algorithms.

For example, the algorithm in Lambert et al. (2005) requires an increasing sequence of sample

sizes to prove convergence to equilibrium (although implementations using samples of size 1 in

each iteration perform well in computational tests). When applied to DP problems, appropriately

modified versions of SFP can be shown to find optimal solutions using sample size of 1; however, to

prove such results, Epelman et al. (2011) had to modify SFP by introducing a decreasing sequence

of deliberate sampling errors to ensure discovery of a globally optimal solution, and both Epelman

et al. (2011) and Sisikoglu (2009) used a version of SFP with a limit on the number of most

recent past decisions of the players used to maintain their empirical distributions. Although the

particular choices of values of these parameters in the algorithm’s implementation could affect its

computational performance, theoretical understanding of this dependence was lacking, calling for

burdensome empirical tuning.

Unlike the preceding versions, parameter-free SFP, presented in this paper for finite-horizon

deterministic DP problems with finite state and action spaces, is a “classic” SFP, with samples (of

size 1) drawn directly from the full history of players’ past best responses. We prove that the optimal

DP solution will be discovered by the algorithm in a finite number of iterations with probability

1, relying on natural random tie-braking in best reply computations to establish optimality.

To test computational performance of the parameter-free SFP, we formulate a DP model of

a novel path-finding problem arising in maritime navigation, discussed in details in Section 3.

The application, in which we consider finding a path for a vessel traveling in a seaway with the

goal of reducing roll motion due to the surrounding waves, provides a setting in which a high-

quality solution to a large-scale DP needs to be delivered within a few seconds of computation,
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despite computationally expensive action cost evaluations. As our computational experiments show,

parameter-free SFP finds high quality solutions after only a few iterations, which could be executed

in seconds by appropriately parallelizing the algorithm.

2. Parameter-Free Sampled Fictitious Play Algorithm

In this paper, we consider finite-horizon deterministic DP problems with finite state and action

spaces. It is well known (see, e.g., Denardo 2003, Chapter 4) that any such DP can be cast as a

shortest (or minimum cost) path finding problem on an acyclic staged directed network (defined

rigorously in subsection 2.1) constructed by associating each stage-indexed state with a node and

each action with a directed arc of length equal to the cost of applying this action in the state

corresponding to the tail node of the arc. (Here, we allow for arc “lengths” to be negative.) Finally,

a terminal node and corresponding arcs are introduced to capture the end of the DP horizon and

terminal costs. Given an initial state, an optimal policy of the DP can then be found by applying

any shortest path algorithm to the resulting network; variations of Dijkstra’s algorithm (Dijkstra

1959) are a popular choice. (Conversely, shortest path problems on acyclic directed networks can

be solved by DP methodologies, with Dijkstra’s algorithm interpreted as a method of solving the

DP functional equation via reaching.) Due to this equivalency between DPs and shortest path

problems in acyclic networks, we present our algorithm and its analysis using the terminology of

shortest path problems, to simplify the discussion.

In this section we introduce a parameter-free variation of a Sampled Fictitious Play (SFP)

algorithm for solving shortest path problems on acyclic staged directed networks and prove its

convergence to an optimal solution.

2.1. Notation and problem definition

Consider a directed graph G= (V,A), where V = {1,2, ..., n+ 1} is the set of nodes and A is the

set of arcs between the nodes. We assume that G has no directed cycles and consists of S + 1

stages, where the starting node 1 is the only node in stage 1, the target node n+ 1 is the only

node in stage S + 1, and all the arcs in A connect nodes from some stage s ≤ S to stage s+ 1.
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(Note that we can make this assumption without loss of generality by introducing dummy nodes

breaking up the arcs spanning multiple stages. We focus on staged networks since they are a natural

representation of finite-horizon DPs.) We let Vs ⊂ V, for s≤ S+1, denote the set of all the nodes

in stage s, and Ai ⊂A, i ∈ V, be the set of all outgoing arcs from node i, where by assumption

Ai ̸= ∅ for i = 1, . . . , n. Let N be the maximum number of outgoing arcs of any node, that is,

N =max{|Ai| : i ∈ V}. For each arc a ∈A we have a cost function c(a) associated with traversing

that arc. The objective of the Shortest Path Problem is to find a minimum-cost path from node 1

to n+1, where the cost of a path is equal to the sum of arc costs along that path.

2.2. Parameter-Free SFP Algorithm

We analyze the shortest path problem as a common utility non-cooperative game in which each

node i= 1, . . . , n corresponds to a player and the outgoing arcs of node i, Ai, correspond to the set

of strategies, or actions, available to player i. Once each player chooses an action, the disutility, or

cost, incurred by all the players in the network is the total cost associated with the path formed by

those actions. That is, when player/node 1 (always the first node on the path) chooses an action

(1, j) ∈ A1 for some j ∈ V2, j becomes the next player/node on the path. Then, the action/arc

chosen by player j identifies the next player/node on the path, and so on until we reach node n+1

(always the last node on the path). We say that the nodes on this path from 1 to n+ 1 are in

play, since the costs of their actions determine the costs incurred by all the players, irrespective of

whether they are in play or not. For ease of notation, we assume there is a unique optimal path

(i.e., path with minimum cost) from 1 to n+1. Let p⋆s ∈ Vs, for s≤ S+1, denote the player on that

optimal path in stage s and, with a slight abuse of notation, a⋆
s = ap⋆s ∈ Ap⋆s denote the optimal

action for player p⋆s. Note that the following discussion can be easily extended to the case with

multiple optimal paths, and the assumption is made solely for the purpose of clear and concise

notation.

We now present our parameter-free variation of the Sampled Fictitious Play algorithm. In every

iteration k of the algorithm, we maintain, for each player i = 1, . . . , n, Hk
i — an ordered set of
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actions in Ai, representing the history of the player’s best replies in the algorithm so far, up to

iteration k.

Sampled Fictitious Play (SFP) Algorithm

Step 0: Initialization. For each player i= 1, . . . , n, select an action from Ai uniformly at random,

and set H1
i equal to that action. Set k= 1.

Step 1: Draw. For every player i= 1, . . . , n, draw an action from Hk
i uniformly at random.

Step 2: Best Reply. For each player i = 1, . . . , n, compute a best reply to the actions drawn by

other players, breaking ties uniformly at random.

Step 3: Update. Append the best replies computed in Step 2 to the history of each player, to get

Hk+1
i for i= 1, . . . , n. Set k= k+1 and go back to Step 1.

In Step 2, each player i= 1, . . . , n is given an opportunity to compute a best reply, i.e., change

its action to any element of Ai in an effort to improve the cost of the path formed by the actions

drawn in Step 1. The best reply calculation is performed independently for each player, and only

takes into account the players’ draws from Step 1. If a player is not in play, i.e., not on the path

formed by actions drawn in Step 1, its decision does not affect the total cost, and the player chooses

its reply from set Ai uniformly at random due to random tie breaking rule.

It is important to emphasize that, unlike the majority of metaheuristics available in the litera-

ture, including previous versions of Sampled Fictitious Play algorithms, our parameter-free SFP

algorithm proposed here does not have any parameters that require customization or fine-tuning.

The random tie-braking in Step 2 provides a natural and sufficient randomness to the algorithm

to avoid “getting stuck” at a local optimal solution as well as facilitate the discovery of an optimal

path in a finite number of iterations, as we show in the following subsection.

It should be noted that, in practice, the algorithm can be implemented more economically than

suggested by the above description (see discussion in subsection 4.1); however, for analysis of

theoretical properties of the algorithm in this section it is convenient to refer to the full statement

of the algorithm above.
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2.3. Algorithm Analysis: Convergence to the Optimal Solution

We now analyze the behavior of the parameter-free SFP algorithm. We begin by studying the

probability of drawing the optimal path in Step 1 of some future iteration of the algorithm. To assist

the discussion, we let Dk
s , for s = 1, . . . , S, denote the event corresponding to player p⋆s drawing

action a⋆
s in Step 1 of iteration k, and Hk

s [l :m] — the event that, in Step 1 of iteration k, player p⋆s

samples its action from among elements l, l+1, . . . , m−1, m of its history, where l≥ 1 and m≤ k.

Finally, note that Hk
i ∈ (Ai)k for i= 1, . . . , n, where (Ai)k is the set of all possible k-dimensional

vectors of elements of Ai (i.e., all possible histories of player i at the beginning of iteration k), and

denote by Hk = [Hk
1 , . . . ,H

k
n] ∈Ak := (A1)k × · · ·× (An)k the collection of best reply histories for

all the players at the beginning of iteration k.

Proposition 1. At the beginning of iteration K,

Pr(Dk0
S |HK) = 1 for k0 ≥K, (1)

Pr(Dk1
S−1|HK)≥ 1

2N
for k1 ≥ 2K, (2)

and for J ≥ 2,

Pr(DkJ
S−J |HK)≥ f(J) for kJ ≥ 2JK, (3)

where f(J) = 1

22
J−1 · 1

N2J−2 . Moreover, for J ≥ 2,

Pr

(
J⋂

j=0

DkJ
S−j |HK

)
≥ h(J) in any iteration kJ ≥ 2JK, (4)

where h(J) = 2

22
J · 1

N2J−1 .

In all of the above probability estimates, conditioning is done only on the history up to iteration

K.

Proof. First, observe that since stage S+1 of our network has only one node (n+1), player p⋆S

has only one action to choose from, a⋆
S = (p⋆S, n+1), and thus its history at any iteration consists

of copies of a⋆
S, implying Pr(Dk

S|HK) = 1 for all k≥K, establishing (1).
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Suppose the algorithm just completed iteration K − 1 (i.e., each player’s history, HK
i , consists

of K entries, for i= 1, . . . , n). Consider stage S − 1 and player p⋆S−1. At worst, all K entries in its

history, HK
p⋆S−1

, are non-optimal. However, in any future iteration, due to the above discussion, this

player’s best reply is optimal if it is in play in this iteration, or, if it is not in play, its randomly

selected best reply is optimal with probability at least 1
N
. Therefore, at any future iteration of the

algorithm, p⋆S−1 selects a⋆
S−1 as its best reply with probability at least 1

N
. In other words, each

entry of Hp⋆S−1
beginning with K + 1 is equal to a⋆

S−1 with probability at least 1
N
, as estimated

at the beginning of iteration K. This allows us to estimate the probability of p⋆S−1 sampling a⋆
S−1

after another K iterations, i.e., in any iteration k1 ≥ 2K, as follows:

Pr(Dk1
S−1|HK) = Pr(Dk1

S−1 |HK , Hk1
S−1[1 :K]) ·Pr(Hk1

S−1[1 :K]|HK)

+Pr(Dk1
S−1 |HK , Hk1

S−1[K +1 : k1]) ·Pr(Hk1
S−1[K +1 : k1]|HK)

≥Pr(Dk1
S−1 |HK , Hk1

S−1[K +1 : k1]) ·Pr(Hk1
S−1[K +1 : k1]|HK)

≥ 1

N
· k1 −K

k1
≥ 1

2N
,

establishing (2). It should again be noted that the above probability is estimated at the beginning

of iteration K, i.e., conditioning is done only on the history up to iteration K.

Let us proceed to stage S − 2 and player p⋆S−2. At any iteration of the algorithm, if this player

is not in play, it will choose a⋆
S−2 as the best reply with probability at least 1

N
. Moreover, if p⋆S−2

is in play, it will identify a⋆
S−2 as the best reply if p⋆S−1 has drawn a⋆

S−1 in Step 1 of the iteration

— but by (2) the probability of this happening in iteration k≥ 2K (conditional on the history at

the beginning of iteration K) is at least 1
2N

. In other words, each entry of Hp⋆S−2
beginning with

2K+1 is equal to a⋆
S−2 with probability at least 1

2N
. So, if we let another 2K iterations elapse, for

k2 ≥ 4K,

Pr(Dk2
S−2|HK)≥Pr(Dk2

S−2 |HK , Hk2
S−2[2K +1 : k2]) ·Pr(Hk2

S−2[2K +1 : k2]|HK)

≥ 1

2N
· k2 − 2K

k2
≥ 1

4N
.
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Once again, the above probability estimate is calculated at the beginning of iteration K, i.e.,

conditioning is done only on the history up to iteration K, and not on the trajectory of the

algorithm in iterations K, K + 1, . . . , k2 − 1. This analysis establishes the basis of induction for

(3) with J = 2. Moreover, for k≥ 4K,

Pr(Dk
S−2 ∩Dk

S−1 ∩Dk
S|HK)≥ 1

4N
· 1

2N
=

1

8N 2
,

establishing the basis of induction for (4) with J = 2.

To show the inductive step, suppose (3) and (4) hold for j = 2, . . . , J . Consider stage S− (J +1)

and player p⋆S−(J+1). At any iteration of the algorithm, if this player is not in play, it will choose

a⋆
S−(J+1) as the best reply with probability at least 1

N
. Moreover, if p⋆S−(J+1) is in play, it will identify

a⋆
S−(J+1) as the best reply if p⋆S−j has drawn a⋆

S−j in Step 1 of the iteration for j = 0, 1, 2, . . . J —

applying (4), the probability of this happening in iteration kJ ≥ 2JK (conditional on the history

at the beginning of iteration K) is at least h(J). In other words, each entry of Hp⋆
S−(J+1)

beginning

with 2JK +1 is equal to a⋆
S−(J+1) with probability at least h(J). So, for kJ+1 ≥ 2 · 2JK = 2J+1K,

Pr(D
kJ+1
S−(J+1)|H

K)≥Pr(D
kJ+1
S−(J+1) |H

K , H
kJ+1
S−(K+1)[2

JK +1 : kJ+1])×

×Pr(H
kJ+1
S−(K+1)[2

JK +1 : kJ+1]|HK)

≥ h(J) · kJ+1 − 2JK

kJ+1
≥ h(J)

2
=

1

22J
· 1

N 2J−1 = f(J +1),

establishing the inductive step for (3). The inductive step for (4) follows easily from the above,

since, for k≥ 2J+1K,

Pr

(
J+1⋂

j=0

Dk
S−J |HK

)
=Pr

(
J⋂

j=0

Dk
S−J |HK

)
×Pr(Dk

S−(J+1)|HK)

≥ h(J) · 1

22J
· 1

N 2J−1

=
2

22J+1 · 1

N 2J
= h(J +1).

Once again, the above probability estimate is calculated at the beginning of iteration K, i.e.,

conditioning is done only on the history up to iteration K, and not on the trajectory of the

algorithm in iterations K, K +1, . . . , k− 1. !
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Let

P k :=
S⋂

s=1

Dk
s

denote the event corresponding to drawing the optimal path in Step 1 of iteration k. Applying

bound (4) of Proposition 1 for J = S− 1, we have the following corollary.

Corollary 1. At the beginning of iteration K,

Pr(P k |HK)≥ q⋆ :=
2

22S−1 · 1

N 2S−2 for k≥ 2S−1K. (5)

Next, we will use Corollary 1 to show that parameter-free SFP will discover an optimal path in

a finite number of iterations with probability 1.

Let us define

k̂j := 2j(S−1), j = 0,1,2, . . . . (6)

This subsequence of Z+ has the following property: applying Corollary 1 for K = k̂j−1, we can

estimate the probability of drawing an optimal path in iteration k̂j, conditional on the history up

to iteration K, as

Pr(P k̂j |Hk̂j−1)≥ q⋆, j = 1,2, . . . .

Leveraging this lower bound, in the following analysis we will first concentrate on the subsequence

of iterations {k̂j, j = 1,2, . . .} of SFP. In particular, this (constant) lower bound allows us to show

that the number of iterations within the subsequence {k̂j}∞j=1 required to draw the optimal path

for the first time is stochastically bounded above by a geometric random variable with parameter

q⋆. This implies that the optimal path will be drawn in a finite number of iterations within the

subsequence with probability one. Finally, since the subsequence {k̂j}∞j=1 tends to infinity, the same

statement can be extended to the complete sequence of iterations of SFP.

Proposition 2. For any j = 1,2, . . ., Pr(P k̂j )≥ q⋆. Moreover, the random variable X̂, defined

as the number of iterations within the subsequence {k̂j}∞j=1 required to draw the optimal path for

the first time, is stochastically bounded above by a geometric random variable with parameter q⋆.

That is,

Pr(X̂ ≤m)≥ q⋆ ·
m∑

j=1

(1− q⋆)j−1, m= 1,2, . . . (7)
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Proof. Consider P k̂j for any integer j ≥ 1. Then, invoking the law of total probability (see, e.g.,

Ross 1995, pp. 23–24 or Zwillinger and Kokoska 1999, p. 31),

Pr(P k̂j ) = E
H

k̂j−1

[
Pr(P k̂j |Hk̂j−1)

]
≥ q⋆, (8)

where the inequality is the result of the lower bound on the value of all conditional probabilities

proved in Corollary 1. In light of (8),

Pr(X̂ ≤m) = 1−Pr(X̂ >m)≥ 1− (1− q⋆)m. (9)

Rewriting the right-hand side of (7) using the formula for geometric series, we get

q⋆ ·
m∑

j=1

(1− q⋆)j−1 = q⋆
1− (1− q⋆)m

1− (1− q⋆)
= 1− (1− q⋆)m. (10)

Substituting (10) into the right-hand side of (9) completes the proof. !

Returning to the full sequence of SFP iterations, consider a random variable X, defined as

the number of iterations of SFP required to draw the optimal path for the first time. Clearly,

Pr(X ≤ k̂j)≥Pr(X̂ ≤ j) for j = 1,2, . . . , which leads to the following corollary of Proposition 2.

Corollary 2. Random variable X, defined as the number of iterations of parameter-free SFP

required to draw the optimal path for the first time, satisfies

Pr(X ≤m)≥Pr(X̂ ≤ k(m))≥ q⋆ ·
k(m)∑

j=1

(1− q⋆)j−1, m= k̂1, k̂1 +1, k̂1 +2, . . . , (11)

where k(m) :=max{j : k̂j ≤m}.

Now we establish the key result of this paper.

Theorem 1. The optimal path will be drawn by the parameter-free SFP algorithm in a finite

number of iterations with probability one. That is, Pr(X <∞) = 1. Furthermore, with probability

one, the number of iterations until, for the first time, the players’ reply in Step 2 of the SFP

algorithm will correspond to the optimal path is finite.
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Proof. Combining the proof of Proposition 2 and the statement of Corollary 2 we have:

Pr(X <m) = Pr(X ≤m− 1)≥ 1− (1− q⋆)k(m−1).

Note that as m approaches infinity, so does k(m−1). Then, letting m approach infinity and noting

that (1− q⋆)< 1, we obtain

Pr(X <∞) = lim
m→∞

Pr(X <m)≥ lim
m→∞

(
1− (1− q⋆)k(m−1)

)
= 1,

which implies that Pr(X <∞) = 1.

To prove the second part of the theorem, observe that if all players p⋆s, s= 1,2, ..., S, draw an

optimal path in Step 1 of some iteration of the algorithm, then none of these players will change

their actions in Step 2 of this iteration. !

In implementations of SFP it is typical to keep track of the incumbent solution, i.e., the shortest

path discovered so far in the algorithm, either by sampling or computing best replies for nodes

that are in play. Once the optimal path is discovered by any of the above means, the incumbent

solution becomes, and stays, equal to this optimal path. The following corollary is an immediate

consequence of Theorem 1.

Corollary 3. Let the incumbent solution be equal to the best solution discovered in the

parameter-free SFP algorithm by sampling or computing best replies. Then, with probability one,

the incumbent will be set to the optimal path in a finite number of iterations.

It should be noted that probabilistic bounds derived in Corollaries 1 and 2 are very pessimistic.

They are sufficient to provide convergence of parameter-free SFP and easy to derive; however, in

practice the algorithm tends to perform much better than the above analysis may suggest.

3. Minimum-motion Path Finding Problem in Maritime Navigation

To demonstrate the computational performance of the parameter-free SFP algorithm proposed

in this paper, we used a novel optimal path-finding (vessel routing) problem arising in maritime

navigation as a computational testbed. We describe the problem and formulate its DP model in

this section, and apply parameter-free SFP to solve the resulting DP in Section 4.
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3.1. Path-finding in Maritime Navigation

Optimal path finding problems have been studied in various settings and applications for decades.

Within the vessel routing setting, Zermelo (1931) introduced a problem of steering a ship along a

minimum-time path through a strong current region, which became to be known as the Zermelo

Navigation Problem, one of the classical problems in optimal control and calculus of variations. A

significant volume of work in naval navigation has followed (e.g., Faulkner 1963a,b, Papadakis and

Perakis 1990, Perakis and Papadakis 1988, 1989, Kimball and Story 1998), the majority of which

has assumed that a closed form speed function is available to the user, thus facilitating analytical

solution approaches. Path planning problems are also studied in computational geometry (e.g., see

survey by Mitchell 2000), robotics (e.g., Lanthier et al. 1999, Rowe 1997, Rowe and Ross 1990, Sun

and Rief 2005), air traffic management (e.g., Nilim et al. 2001, Nilim and El Ghaoui 2004), and

many other applications. However, the majority of work to date focuses on minimizing travel time,

distance, energy consumed, or other additive objective functions, whereas our goal is more complex:

we aim to reduce a measure of vessel roll (discussed below) without significantly increasing travel

time to destination compared to the most direct path.

Any vessel moving in a seaway is subjected to the effects of surrounding waves, which impact its

motions, especially roll. This is due to the fact that roll exhibits resonant behavior, and a typical

natural period of roll coincides with waves frequencies often occurring in sea. Significant roll motions

affect crew’s and passengers’ comfort, and limit their productivity and capacity. The motions can

also damage cargo, jeopardize safety of the vessel and negatively impact the completion of the

ship’s missions (e.g., helicopter landing, rescue and recovery operation). In Fang and Luo (2007),

the authors point out that “the serious roll motion generally affects the ship stability, comfort

and efficiency of crews, accuracy of electrical mechanism, and ship course. Therefore reducing roll

motion is advantageous for ships in waves.” To date, there has been significant research in the field

of naval architecture and marine engineering delivering a variety of roll motion control devices since

“roll is the largest and most undesirable component ship motion” (Treakle et al. 2000). Examples
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of such devices (varying between passive and active controllers) are bilge keels, anti-roll tanks,

moving weights, gyroscopic stabilizers, and stabilizing fins (Smith and Thomas 1990). In contrast,

the goal of our work is to find an alternative path to the vessel’s destination to reduce the roll

motion, while avoiding a significant increase in travel time. This is particularly important in the

settings where simply delaying travel until unfavorable conditions pass is not an option, such as in

the case of rescue and military missions, as well as transportation of time sensitive and perishable

goods.

To enable accurate, up to date modeling of the vessel’s environment, it is important to utilize

recent developments in meteorological and oceanographic sensing and forecasting technologies,

which have made it possible for maritime vessels to have access to more accurate and current

environmental data than ever before (e.g., Plant et al. 2005, Johnson et al. 2009). Advances in

modeling vessel interaction with time-varying nonlinear wave-fields allows navigation systems to

take advantage of this accurate data (Zhang et al. 2010). In our earlier work (Dolinskaya 2012),

we have focused on the fastest path finding problem capturing the detailed real-time information

with the vessel satisfying a set of operability and dynamics constraints. Here, we extend that work

to the minimum-motion path finding problem, and integrate detailed, real-time information about

the surrounding environment and include vessel’s dynamics restrictions (such as minimum turning

radius) and innovative motion prediction model to deliver a high fidelity model. Our high fidelity

model calls for a new solution method, since small computational time is critical to real-time

navigation in dynamic environments. The proposed parameter-free SFP algorithm meets this need,

as demonstrated by our computational study.

3.2. Dynamic Programming Formulation of the Minimum-Motion Path Finding
Problem

We consider the problem of minimizing the root-mean-squared (RMS) value of the motion experi-

enced by a vessel during travel from a given starting point s ∈R2 to a specified final target point

f ∈R2, leaving s at time ts = 0. To account for constraints on minimum turning radius, we add the

starting heading angle, θs ∈ S1, and, if appropriate, the final heading angle, θf ∈ S1, to the set of
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input parameters. (Here, S1 := [0, 2π].) We let r > 0 denote the minimum turning radius and v > 0

denote vessel speed, which is assumed to be constant. We focus our discussion on the roll, which

is a rotational motion about the longitudinal axis passing through the vessel. Let φ(a,θa, ta) ∈ R

denote the roll (measured in degrees) at point a∈R2 at time ta ≥ 0 when vessel’s heading direction

is θa ∈ S1. To measure the RMS roll along a path from s to f , we discretize the path into a set of

equally spaced points, ∆t time units apart (and v∆t distance units apart), and let φi denote the

roll experienced by a vessel at the ith such point. The discretization is a necessary approach since

roll motion is evaluated using simulation models and no analytical form of φ(a,θa, ta) is available.

Then our goal is to minimize the following quantity:

RMSRoll =

√
φ2
1 + ...+φ2

T

T
, (12)

where T is the number of discretization points on this path. Root-mean-squared roll is a discretized

version of the control performance measure function widely used in optimal vessel control when

assessing ship’s exposure to motions, especially roll (see Chapter 6, Automatic Control of Ships,

in Fossen 1994). This is a well-established discretization due to its applicability in practice, when

closed form control equations of the roll are replaced with more accurate and realistic computer

simulations, as it is in our case.

Our general problem statement is as follows: Find a path starting at time ts = 0 from configura-

tion (s,θs)∈R2×S1 to the final state (f,θf )∈R2×S1 that minimizes RMS roll without significant

increase in travel time from a fastest (direct) path, where path curvature is constrained by r > 0

and vessel speed is v > 0.

Note that the above problem description does not rigorously define the constraint “without

significant increase in travel time.” The general idea is that we are not interested in making a

drastic detour from a direct (and fastest) path with only a minor improvement in the experienced

roll motion. Thus, we want to integrate a trade-off between motion and travel time. Our DP-

based approach to the minimum-motion path finding problem will incorporate this tradeoff through

several modeling choices.
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Objective function: The overall goal of our path finding problem is to minimize the RMS

roll defined in (12). However, to apply dynamic programming, the objective function has to be

additive, so, instead of minimizing RMSRoll, we focus on minimizing the total sum of squared roll

values along a path from (s,θs) to (f,θf ):

SqRoll = φ2
1 + ...+φ2

T . (13)

Recall that to discretize the path we spaced the motion measurement points at equal time intervals

∆t (and equal distance intervals v∆t), so a longer path would have a larger number of terms (T )

in equation (13). At the same time, when the values of these additional summation terms are

significantly smaller than along a more direct path, SqRoll would be able to capture this phenomenon

and would favor the longer path. Consequently, by minimizing SqRoll, our path-finding model

implicitly incorporates a trade-off between total vessel roll and total travel time.

DP state definition: An important characteristic of vessel navigation is the constraint on the

sharpest turn it can feasibly make. Thus, in addition to capturing the current location of the

vessel, our DP model state keeps track of the vessel heading angle. This enables us to implement

control-feasible paths whose minimum turning radius is bounded by r. Also, in the case of evolving

wave-fields presented in this paper, vessel motions depend on time as well as its location and

heading angle. Thus, we let (a,θa, ta) be the DP state, where a∈R2 corresponds to the location of

the vessel, θa denotes it heading angle, and ta is the time. (In the fastest-path finding version of

this problem in Dolinskaya 2012 we were able to omit the time variable from the DP state space

without loss of optimality. However, this technique cannot be applied to the minimum motion

model. Note that adding time to the state description exponentially increases the state space and

computational demands of the model.)

DP model: To formulate the problem using dynamic programming, we discretize vessel paths

into waypoints, with l > 0 denoting the Euclidean distance between each pair of adjacent waypoints.

This construction is illustrated in Figure 1. Here, a ∈ R2 is the location of the current waypoint,

and θa ∈ S1 is the heading of the vessel at a; for modeling purposes we discretize S1 into a finite set
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of values ∆θ degrees apart. To generate waypoints adjacent to a, we select a discrete set of points

(with angular distance δ) on the circle of radius l centered at a; however, only points that can

be reached from (a,θa) along control-feasible paths that are contained within the circle of radius

l centered at a are included, again, to avoid excessively long paths. At each waypoint b on the

perimeter of the circle, we indicate which headings θb are achievable by control-feasible paths from

(a,θa).

Figure 1 Construction of adjacent waypoints

Recall that it is important to keep track of the total travel time along the chosen path in order to

avoid long detours with only marginal benefits to the total motion. In light of this, we will implement

the shortest (and fastest) path between each pair of waypoints along the path. We use results from

the well-studied Dubins car problem (Dubins 1957, Sussmann and Tang 1991, Boissonnat et al.

1994) that deliver a shortest path with bounded curvature from one point to another taking into

account the initial and final heading angles. We let τ(a,θa, b,θb) denote the travel time along the

shortest control-feasible path from configuration (a,θa) to the adjacent configuration (b,θb), and let
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R(a,θa, b,θb, ta) denote the sum of squared rolls experienced by a vessel along this path departing

a at time ta. This approach ensures continuity of vessel heading along the path and enforcement

of the system dynamics restrictions.

For each DP state (a,θa, ta) we define the optimal value function g(a,θa, ta) to be the minimum

sum of squared rolls experienced by the vessel over all the paths from the initial state (s,θs, ts = 0)

to point a that arrive at a with the heading angle θa at time ta. Then, we have the following DP

forward functional equation: g(s,θs, ts = 0) = 0 and

g(b,θb, tb) = min
a,θa : b adjacent to a

g(a,θa, tb − τ(a,θa, b,θb))+R(a,θa, b,θb, tb − τ(a,θa, b,θb)) (14)

for (b,θb, tb) ̸= (s,θs,0).

Recursively solving equation (14) until we reach the final state (f,θf ) results in the optimal path.

3.3. Test Problem Instances for Computational Experiments

In our computational experiments detailed in the following section we considered multiple instances

of the minimum-motion path finding problem using the S-175 containership model. In these test

instances, the vessel speed was set to v = 10 meters/sec (approximately 20 knots), and the mini-

mum turning radius was set to r= 300 meters. We generated a simulated wave-field by specifying

the wave distribution parameters: significant wave height 3.25 meters, peak period 9.53 sec, and

dominant wave direction 30 degrees (from SWW). The wave propagation model (Nwogu 2009,

Nwogu and Lyzenga 2010) forecasts the evolution of the created wave-field over time, while the

quasi-steady seakeeping and maneuvering MotionSim program (Zhang et al. 2010) evaluates the

containership roll. Discretization parameter ∆t used for evaluation of SqRoll and RMSRoll was set

to 1 second.

The starting point s and finish points f in each instance were selected about 2200 meters apart,

and we discretized the set of potential values of headings θ into 36 angles 10◦ apart. The waypoint

distance parameter l was set to 250 meters, and waypoints were selected δ = 10◦ apart; i.e., each

point could have no more than 36 adjacent waypoints. To regularize the set of waypoints, we
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rounded their coordinates to the nearest point on a 10 meter by 10 meter grid. Since the size of the

grid is small compared to the value of l, only a small perturbation of the waypoints was required.

Moreover, locating the waypoints on the grid works hand in hand with the wave field simulation

engine, which also uses a grid of 10 by 10 meters.

4. Numerical Results

We will now provide the details of our implementation of parameter-free SFP for the DP model

of the minimum-motion path finding problem discussed in Section 3.2, and discuss its excellent

empirical performance (including a comparison with Dijkstra’s algorithm).

4.1. Problem Characteristic and Challenges; Comparison with Dijkstra’s Algorithm

In order to compare the performance of the parameter-free SFP and Dijkstra’s algorithms, we ran

a number of initial numerical tests for the S-175 containership. The DP network in our application

was prohibitively large for a straightforward application of the traditional Dijkstra’s algorithm

(Dijkstra 1959) to be tractable. We attempted to mitigate this problem by implementing a rolling

(receding) horizon procedure that “looks out” only a few (two to four) waypoints ahead before

deciding on the next waypoint (for discussion of rolling horizon approaches to DP and shortest

path problems see, e.g., Alden and Smith 1992, Lee and Denardo 1986, Ovacikt and Uzsoy 1994).

However, due to the specific characteristics of the problem’s objective function (discussed below), we

observed that short rolling horizon guided the vessel in a locally-optimal direction and the resulting

path drifted away from the target point without a good return strategy, while a longer rolling

horizon lead to an exponential increase in computational time of the algorithm, quickly exceeding

the practical threshold for real-time implementation. The specific challenging characteristics of this

problem are:

1. Expensive arc cost computation: Motion prediction model, MotionSim, that evaluates

function φ(·) is computationally demanding. Thus, evaluating the cost of each arc in the DP network

is a computationally expensive operation and the majority of computing time of any path-finding

algorithm is spent running the MotionSim program. Since Dijkstra’s algorithm is a breadth-focused
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search algorithm, it would require evaluating arc costs for almost the entire network, making its

implementation prohibitively time-demanding.

2. Highly direction-dependent objective: Due to the specific nature of the vessel roll

motion, function φ(a,θa, ta) is highly direction-dependent. Thus, short look-ahead horizon results

in the algorithm selecting a locally-optimal heading direction without giving significant weight to

the need to eventually reach a pre-specified final point.

3. Ergodic environment: While the wave-field in our problem is a dynamic environment

with direction, location and time dependent short-crested waves impacting the vessel motions,

the underlying distribution of the waves has a single dominant wave direction. As a result, we

are dealing with an ergodic system, and the limited vessel maneuverability, as reflected by the

minimum turning radius r, reinforces the ergodic property (since the vessel encounters several

waves before it can change its course). This characteristic further enhances the “drifting off” effect

of a rolling-horizon type solution approach.

In particular, in our computational experiments with rolling horizon Dijkstra’s algorithm we

observed that (i) while the smaller rolling horizon (two waypoints look ahead) had a smaller run

time (typically, 300 — 500 seconds), it often resulted in the computed path guiding the vessel in

a locally optimal heading direction away from the target point f which was never reached; (ii) on

the other hand, increasing the rolling horizon to four, five or six waypoints ahead quickly increased

the run time (typically, to 1800 — 2500 seconds), and in most cases, the algorithm timed out after

two hours without finding a solution. In one instance, we ran the algorithm for 48 hours with six

waypoints look ahead horizon and were not able to find a solution within that timeframe. Moreover,

this problem is unlikely to benefit from other popular modifications of Dijkstra’s algorithm, such

as the A∗ heuristic (see, e.g., Pearl 1984), since the network lacks an accurate guidance function,

i.e., a heuristic for estimating total cost of travel from the current to the final state, again, due to

the challenging characteristics described above.

For comparison, we tested the computational performance of parameter-free SFP for 10, 20 and

30 iterations of the algorithm applied to the entire network of DP states between s and f . As
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discussed in Section 2, at every iteration the algorithm keeps track of the best solution (an s-to-f

path in the DP network) discovered so far, either by sampling or computing best replies. The run

time of the algorithm grows linearly with the number of iterations performed, from around 500

seconds (for 10 iterations) to 1800 seconds (for 30 iterations). In most cases, the most significant

improvement in the best path found occurred within the first 4 to 8 iterations. In addition, in

most of the instances where the rolling horizon Dijkstra’s algorithm found a solution before timing

out, the solution found by the parameter-free SFP after 10 iterations was better. Thus, we chose

to run the complete set of numerical experiments to evaluate the performance of our minimum-

motion model using 10 iterations of the parameter-free SFP algorithm. As our experiments show,

a strength of the parameter-free SFP algorithm is its ability to find a high-quality solution in just

a few iterations.

Our implementation of parameter-free SFP took advantage of several inherent efficiencies possi-

ble in the algorithm. Note that the players (nodes) do not need to explicitly update their histories

in those iterations when they are not in play. Instead, for each player, we only record the actions

chosen in iterations when it was in play; we can sample an action from its history by conditioning

on whether the action comes from the “in play” or “not in play” portion of history, and in the

latter case sampling uniformly from its action space. The size and the almost tree-like structure of

our problem network imply that, in any iteration, only a small fraction of players will be on the

active path and thus computing their best replies; moreover, only a small fraction of feasible paths

will need to be considered for each best reply computation. Thus, in each iteration, we need to

sample actions for only a fraction of the players and evaluate only a small fraction of network arcs.

It should be pointed out that SFP also easily lends itself to parallelization. Indeed, since each

player computes a best reply in Step 2 of the algorithm independently, and moreover, evaluations

of each action available to a player are also independent, those computations can be performed

in parallel. In the instances tested in our experiments, a typical s-to-f path consisted of approxi-

mately 10 waypoints, and on average each player had 17 action options. Therefore, with sufficient
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parallel processors available, we anticipate that the runtimes we report for our non-parallelized

implementation can be reduced by 2 orders of magnitude. This would bring the computation time

down to a few seconds, making it suitable for real-time implementation.

4.2. Further Numerical Tests with parameter-free SFP

To further test the performance of parameter-free SFP, we designed a collection of 18 test instances

in which the angle of the vector
−→
sf spanned the entire S1, to capture the effect of direction on the

vessel roll motion. We set θs to the angle of vector
−→
sf , and did not restrict the value of the final

heading θf . For each instance, we ran 10 iterations of parameter-free SFP, keeping track of the

incumbent solution, and compared the best path found in 10 iterations to the shortest (straight

line) path from s to f .

Table 1 summarizes the results for our experiments. The first column (labeled “θs”) lists the

value of the angle
−→
sf in each of our 18 test instances. The second column reports iteration number

at which the best found path was discovered by SFP, and the third column contains run times for

10 iterations of the algorithm. The fourth column displays the value of the DP objective function,

i.e., SqRoll, measured in degrees squared, along the best path found by the parameter-free SFP. In

the final two columns we compare this path to the shortest (straight line) path from s to f : column

5 reports percentage change in RMSRoll (the original measure of roll), and column 6 — percentage

change in total travel time.

According to Table 1, in most instances the path found by applying parameter-free SFP to

the DP model of the problem significantly (by up to 77.8%) improved RMS roll compared to the

shortest path, with increase in travel time ranging between 4% and 91%. The improvement in roll

is particularly significant for the heading directions where the vessel experiences high roll values

(greater than 700 degrees squared in total squared roll). However, in instances where motion values

are small (see rows corresponding to θs = 180◦, 200◦, and 220◦ in Table 1), our approach finds paths

that are slightly worse than the shortest path. This phenomenon can most likely be explained by

the fact that in those instances the DP network’s arc costs are all similarly small in magnitude.
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θs Iter. Best Found SFP ComputTime (s) SqRoll RMSRoll Travel Time

0◦ 3 469 1174.80 -62.6% 45%

20◦ 5 501 709.62 -34.8% 4%

40◦ 8 529 974.95 -39.0% 7%

60◦ 2 739 1697.42 -64.7% 71%

80◦ 5 477 2157.44 -65.4% 55%

100◦ 10 503 1159.45 -74.7% 83%

120◦ 3 465 1167.47 -47.7% 51%

140◦ 1 451 527.10 -19.2% 16%

160◦ 10 484 262.52 -6.7% 5%

180◦ 1 476 124.05 0.4% 7%

200◦ 1 407 36.33 3.7% 6%

220◦ 5 469 20.13 1.5% 4%

240◦ 1 473 69.01 -6.0% 6%

260◦ 10 522 194.73 -13.8% 12%

280◦ 4 433 495.83 -5.0% 7%

300◦ 10 499 1256.30 -27.1% 26%

320◦ 10 719 965.40 -77.8% 91%

340◦ 2 455 1494.61 -75.0% 76%

Table 1 Results of computational experiments on 18 test instances. Fifth and sixth columns contain

percentage change in RMS roll and travel time of the path found by the parameter-free SFP algorithm versus the

direct (straight line) path.

As a result, there is no significant difference between various feasible paths, and the path found by

the algorithm in 10 iterations is slightly suboptiomal.



Dolinskaya et al.: SFP for Deterministic DPs
00(0), pp. 000–000, c⃝ 0000 INFORMS 25

(a) Path found by SFP (solid) vs. the direct path (dashed).

(b) Roll motions along the path found by SFP (c) Roll motions along the straight line path

Figure 2 Results for θs = 20◦.

Figure 2 illustrates our findings for the instance with θs = 20◦: Figure 2(a) plots the path found

by the SFP algorithm and the direct s-to-f path, while Figures 2(b) and 2(c) plot the roll motions

experienced by the containership following these two paths, respectively.

5. Conclusion and Future Work

We presented a parameter-free variation of the Sampled Fictitious Play algorithm for solving deter-

ministic Dynamic Programming problems with finite state and action spaces, including general

shortest path problems in acyclic networks. The algorithm eliminates the need for parameters

present in the preceding versions of the algorithm that require fine-tuning and further customiza-
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tion. Instead, the random tie-braking procedure of the parameter-free SFP algorithm provides a

natural and sufficient randomness to guarantee the discovery of an optimal path in a finite num-

ber of iterations. Our algorithm is well-suited to very large-scale problems with computationally

expensive action (arc) cost evaluations, as demonstrated by our numerical experiments on the

minimum-motion vessel path finding problem, where it found high quality solutions in just a few

iterations.

We also presented a novel approach to roll-minimizing path finding in marine navigation by pre-

senting a DP model that (1) integrates dynamic real-time information about the vessel’s surround-

ings, (2) includes minimum turning radius constraint, and (3) captures motion versus travel-time

trade off for the considered path. Our numerical results demonstrate that the presented model and

algorithm can significantly reduce vessel root-mean-squared motion (roll) on turbulent routes with

an overall acceptable increase in total travel time.

In our future work, we plan to further study the behavior and properties of the presented

parameter-free SFP algorithm. More specifically, we are interested to characterize a class of prob-

lems for which our algorithm performs especially well and develop a tight bound on the convergence

rate. We believe the parameter-free SFP is an excellent solution method for a wide class of prob-

lems, and further investigation is necessary to fully quantify its benefits.
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